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1. Introduction

An important and interesting challenge facing theorists investigating heavy ion physics is

to predict the rate of energy loss of a heavy quark moving through a quark gluon plasma

(QGP), which is a quantity of direct experimental relevance [1 – 3]. For weak coupling

and ultrarelativistic quarks, γv À 1/g À 1, the dominant mechanism for this is gluon

bremsstrahlung, while for the experimentally equally important region γv . 1, the energy

loss occurs through elastic collisions with light plasma constituents. Both of these cases

have been extensively studied [4 – 8], but all existing calculations share the fundamental

shortcoming that they assume the plasma to be weakly coupled, which need not be the

case in the energy range of interest for instance for RHIC physics.

While one has grown to rely upon lattice QCD as the source of direct information on

the strong coupling regime of various static observables, it is at present still a relatively

inefficient tool in the description of real-time phenomena (for recent advances, see e.g.

ref. [9]). A lot of attention has therefore been turned towards addressing the question

of the energy loss rate of a quark moving in a strongly coupled non-Abelian plasma in

an entirely different framework, the N = 4 supersymmetric Yang-Mills (SYM) theory

with gauge group SU(Nc). There, one has the unique opportunity of being able to access

analytically the strong coupling limit of the quantum field theory (in its large Nc limit)

via the famous AdS/CFT conjecture that relates the theory to dual type IIB supergravity
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on an AdS5 × S5 background [10]. The energy loss calculation then reduces to studying

classical string dynamics in the AdS5 background, which has yielded useful analytical

results for the heavy (and light) quark energy loss parameters in the strong coupling limit

(see refs. [11 – 17] and references therein).

While the development of non-equilibrium lattice field theory methods as well as the

search for dual string theories of more QCD-like theories continue, it is worthwhile to first

ask the more modest question of what kind of qualitative, or even quantitative, insight

the QCD community can draw from the existing SYM calculations. An obvious way of

addressing this is to perform similar weak coupling calculations in the SYM theory that

have been carried out in the QCD context and compare the results on one hand to the

the weak coupling limit of QCD and on the other hand to the strong coupling limit of the

N = 4 SYM. This can be expected to yield valuable information on the similarities and

differences of the two theories and to furthermore indicate, to which extent one can simply

extrapolate the existing weak coupling results in QCD to strong coupling. In the present

paper, we aim to do exactly this by investigating the simplest observable related to the

energy loss of a non-relativistic heavy quark in the SYM theory, its diffusion coefficient, in

the weak coupling regime. The calculation is to a large extent parallel to the corresponding

QCD computation of Moore and Teaney [8] and generalizes many of its results to the SYM

case.

Our paper is organized as follows. In section 2, we briefly introduce N = 4 SYM

and write down its Lagrangian in a form useful for weak coupling expansions, after which

we discuss when and how one may use semi-classical kinetic theory techniques to obtain

the diffusion coefficient of a heavy particle in a quantum field theory. In section 3, we

then go through the necessary calculations, after which we display our main result for

the heavy quark diffusion coefficient, DQ, that is to be further analyzed and discussed in

section 4. In section 5, we finally draw conclusions and outline some future work to be

carried out through weak coupling kinetic theory calculations in the SYM theory. The

appendices contain further computational details, such as a relatively detailed derivation

of our Lagrangian as well as a discussion of how the necessary scattering amplitudes and

integrals were evaluated.

Throughout the paper, we will for convenience use notation adopted from refs. [8, 18].

This implies working with the Minkowski space metric − + ++ and denoting four-vectors

by capital letters P,Q, three-vectors by bold ones p, q and the absolute values of the latter

by p, q. The Dirac gamma matrices are defined so that γ0 is anti-hermitian while the γi

are hermitian, and consistently with this we have γ5 ≡ iγ0γ1γ2γ3 and β ≡ iγ0. The gauge

is fixed by choosing to work in the Coulomb gauge.

For the most part, we will work with four-component Majorana spinors that can be

written in the special form

ψ =

(
eζ∗

ζ

)
, (1.1)

where e ≡ iσ2 and ζ denotes a two-component Weyl fermion. For the Majorana spinors,

ψ̄ ≡ ψ†β = ψT εγ5, (1.2)
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with ε being the 4×4 matrix

ε =

(
e 0

0 e

)
.

2. The setup

2.1 N = 4 SYM with massive quarks

The theory we consider is N = 4 Super Yang-Mills coupled to a N = 2 heavy fundamental

hypermultiplet. The field content of N = 4 SYM consists of a gauge field Aµ, four Majorana

fermions ψi and three complex scalars φp, while the additional N = 2 multiplet is composed

of two heavy scalars Φn and a Dirac fermion ω. All N = 4 fields transform under the

adjoint representation of the gauge group SU(Nc) and are therefore traceless hermitian

Nc × Nc matrices, while the N = 2 sector consists of Nc component vectors in color space

transforming under the fundamental representation.

Following ref. [19], we define φp = 1/
√

2 (Xp + iYp), with Xp and Yp hermitian, which

allows us to write our Lagrangian in the form

L = L0 + L1 + L2, (2.1)

with

L0 = −tr
{1

2
FµνFµν + ψ̄i /Dψi + (DXp)

2 + (DYp)
2
}

− Φ†
n(−D2 + M2)Φn − ω̄( /D + M)ω, (2.2)

L1/g = tr
{
− iψ̄iα

p
ij[Xp, ψj ] + ψ̄iγ5β

p
ij [Yp, ψj ]

}
− ω̄ (Y1 − iγ5X1)ω

+ 2
√

2 Im
(
− ω̄P+ψ1Φ1 − Φ†

2ψ̄1P+ω + Φ†
1ψ̄2P+ω − ω̄P+ψ2Φ2

)

− 2MΦ†
nY1Φn, (2.3)

L2/g
2 = −1

2
tr (i[χA, χB ])2 + (−1)nΦ†

n

(
[φ2, φ

†
2] + [φ3, φ

†
3]

)
Φn

− 4Re
(
Φ†

1[φ2, φ3]Φ2

)
− 1

2

∣∣(−1)nΦ†
ntaΦn

∣∣2 − 2
∣∣Φ†

2taΦ1

∣∣2

− Φ†
n{φ1, φ

†
1}Φn. (2.4)

Here, D denotes covariant derivatives in the appropriate representations of SU(Nc), χ ≡
(X1, Y1,X2, Y2,X3, Y3) and a sum over repeated indices is implied. The matrices αp and

βp are given by

α1 =

(
iσ2 0

0 iσ2

)
, α2 =

(
0 −σ1

σ1 0

)
, α3 =

(
0 σ3

−σ3 0

)
, (2.5a)

β1 =

(
−iσ2 0

0 iσ2

)
, β2 =

(
0 −iσ2

−iσ2 0

)
, β3 =

(
0 σ0

−σ0 0

)
, (2.5b)
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and they satisfy the algebra

{αp, αq} = {βp, βq} = −2δpq,
[
αp, βq

]
= 0. (2.6)

For more details on the derivation of this Lagrangian, see appendix A.

From the form of the Lagrangian it is clear that neither the heavy fermion nor the

heavy scalar number is independently conserved, as eq. (2.3) fails to be invariant under the

separate global U(1) transformations

Φi → UΦΦi,

ω → Uωω, (2.7)

where UΦ and Uω are independent phases. This implies that the diffusion coefficients for

heavy quarks and heavy scalars are in general not independently well-defined. However,

if UΦ = Uω, the transformation of eq. (2.7) does leave the Lagrangian invariant, which

means that this combined transformation gives rise to a conserved heavy flavor current

that includes both fermions and scalars. It is the diffusion of this heavy flavor density that

we are interested in.

2.2 Diffusion of a heavy non-relativistic particle

Following the approach of ref. [8], let us consider the kinematics of a heavy particle im-

mersed in weakly coupled N = 4 SYM plasma at temperature T . We assume that the

particle is in thermal equilibrium with the plasma and that its mass M À T , in which

case the typical energy of all types of excitations is E ∼ T and the typical momentum of

the heavy particle is p ∼
√

MT . At weak coupling, the dominant scattering processes for

the heavy particles are 2 ↔ 2 elastic collisions with light plasma constituents, in which

the typical momentum exchanged is q ∼ T and the typical change in the heavy particle

velocity is δv ∼ T/M ¿ 1. It thus takes many collisions for the velocity to change signifi-

cantly, and consequently the collisions may be treated as uncorrelated events, in which the

heavy particles receive random kicks from the medium. In addition, the mean free path of

the heavy particle λMFP ∼
(

M
T

)2 1

g4T log 1
g

is parametrically large in comparison with its de

Broglie wavelength, thus allowing one to use semiclassical methods in the treatment of its

dynamics.

Let us then look at the trajectory of a heavy particle that starts from the origin at

t = 0 and denote its position at time t by x(t). Under the assumption that collisions with

the medium force the heavy particle to undergo a random walk, the diffusion coefficient D

is defined by

〈x2(t)〉 = 6Dt. (2.8)

Denoting the random force exerted on the particle by the medium by ξ(t), the above

assumptions imply that the dynamics of the particle follow from the Langevin equation

(see e.g. ref. [20])

dpi

dt
= ξi(t) − µpi, (2.9)
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where µ is the momentum drag coefficient. As collisions with the light particles are uncor-

related, we furthermore have

〈ξi(t)ξj(t
′)〉 = κδijδ(t − t′), (2.10)

where 3κ is the mean squared momentum transfer per unit time. Using the equilibrium

relation 〈p2〉 = 3MT as well as the solution to the above differential equation, it is then

easy to show that [8]

µ =
κ

2MT
, 〈x2(t)〉 =

6Tt

Mµ
, (2.11)

from which it follows that the heavy particle diffusion coefficient is given by

D =
2T 2

κ
. (2.12)

The above result relating the diffusion coefficient to κ proves highly useful for our

purposes, as in the semiclassical regime where kinetic theory is valid we may immediately

write down an expression for the latter in terms of the scattering amplitudes of the quantum

theory. Denoting the heavy particles by H, the light particles by ` and the Bose and

Fermi distribution functions by nb(k) and nf (k), respectively, the mean squared momentum

transfer per unit time is given by [8, 21]

3κ =
1

16(2π)5M2

∫
d3k d3k′d3p′

k0k′
0

δ3(p− p′ + k′ − k)δ(k − k′)

×
∑

H`,H′`′

{
|MH`→H′`′ |2 n`(k)(1 ± n`′(k

′))
}

. (2.13)

Here, |MH`→H′`′ |2 stands for the scattering amplitudes squared — summed over all internal

degrees of freedom of the light particles and the final state heavy particle and averaged over

those of the initial heavy particle (including the flavors) — for the process1 H` → H ′`′.

The plus sign is taken when `′ = b represents a final state boson and the minus sign when

`′ = f represents a final state fermion.

3. Calculations and results

In the non-relativistic limit where M À T , the number of interaction terms in the La-

grangian relevant for the scattering of massive particles can be greatly reduced, as there

exists a hierarchy in the M dependence of the various scattering amplitudes. First of all,

the amplitude for any tree level process that contains an intermediate heavy particle will be

suppressed by an inverse power of M relative to those with an intermediate light particle.

Second, in the non-relativistic limit each external heavy fermion2 will introduce a factor of

1The field theory also allows for heavy particles to scatter off of other heavy particles, but their contri-

bution to the integral of κ is suppressed by an exponential of M/T .
2We use the convention ūs(p)us′(p) = 2Mδss′ in the normalization of the heavy spinors.
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a)

b)

c)

...
Figure 1: a) The lowest order tree-level processes contributing to the heavy quark diffusion coeffi-

cient, the amplitudes of which come with the maximal power of M . b) The corresponding diagrams

relevant for the heavy scalar diffusion coefficient. c) Examples of processes contributing to the

heavy flavor diffusion coefficient but suppressed by powers of T/M . The solid and dotted bold

lines correspond to the heavy quarks and scalars, respectively, the solid and dotted light lines to

the corresponding massless fields, and the wavy lines to gluons. The arrows drawn adjacent to the

light quark lines indicate the (arbitrary) direction of the flow of the Majorana fermion number (see

e.g. ref. [22]).

√
M to the amplitudes, and each heavy scalar/gluon vertex (with momentum P ∼ (M,0)

flowing through it) as well as each heavy scalar/light scalar vertex will introduce an ex-

plicit factor of M . Therefore, at leading order in g the diagrams proportional to the highest

power of M are those, in which a heavy fermion or scalar scatters elastically off of a light

plasma constituent via the exchange of a light intermediate boson. These processes are

depicted in figure 1.a-b, while some examples of processes whose amplitudes are suppressed

by positive powers of T/M are shown in figure 1.c. The latter include inelastic processes,

diagrams with heavy intermediate lines and graphs containing a four-scalar vertex that is

independent of M .

Finally, we note that in the non-relativistic limit we may neglect the coupling of Xp

to heavy fermions, which follows from the fact that ω̄γ5ω is parity odd. In the non-

relativistic limit, the scattering of fermions via scalar exchange is independent of spin

and thus conserves the parity of the fermions, implying that the heavy fermion scattering

amplitudes containing an exchanged Xp must be suppressed by inverse powers of M . In

summary, to obtain the desired heavy flavor diffusion coefficient to leading order in T/M

and g, we may neglect L2 entirely and replace L1 by the effective interaction Lagrangian

Leff
1 /g = tr

(
ψ̄iγ5β

1
ij [Y1, ψj ]

)
− ω̄Y1ω − 2MΦ†

nY1Φn. (3.1)

After neglecting the species changing Yukawa terms from L1, the Lagrangian becomes

invariant under the separate U(1) transformations of eq. (2.7). It then follows that to

leading order in M , the heavy fermion and scalar currents are independently conserved,

and therefore the corresponding fermion and scalar diffusion coefficients DQ and DS can
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be independently defined. For these currents, the mean squared momentum transfer per

unit time is given by

3κH =
1

16(2π)5M2

∫
d3k d3k′d3p′

k0k′
0

δ3(p − p′ + k′ − k)δ(k − k′)

×
∑

`,`′

{
|MH`→H`′ |2 n`(k)(1 ± n`′(k

′))
}

, (3.2)

where H stands for either Q or S, and the corresponding diffusion coefficients read

DH =
2T 2

κH

. (3.3)

Even though DQ and DS are independently well defined, a quick inspection of the

forms of L0 and Leff
1 reveals that their values are in fact equal. To see this, note that

if the momentum exchanged in a collision is q = p′ − p ∼ T , where p and p′ are the

momenta of the incoming and outgoing heavy quarks, respectively, then the spinors us(p)

corresponding to the external legs satisfy (up to O(T/M) corrections)

ūs(p)us′(p
′) ≈ 2Mδss′ ,

ūs(p)γµus′(p
′) ≈ −2iMδss′δµ0, (3.4)

implying that the contributions of the heavy fermions to scattering amplitudes are spin

independent. To obtain the tree level scattering amplitudes that we are interested in (and

that are not sensitive to particle statistics), we may therefore replace the heavy quark by

a complex scalar field Σ, with the factors of ±2M added explicitly to the corresponding

vertices. The couplings of Σ to the light fields are then identical to those of Φn, and

therefore the corresponding scattering amplitudes agree as well. In what follows, we will

exploit this symmetry and only consider the heavy fermion diffusion coefficient.

Before we can proceed to the actual computation of DQ, we must still deal with the

fact that the expression for κQ given in eq. (3.2) is infrared sensitive, which can be seen by

noting that if one were to use bare propagators for the exchanged bosons in the scattering

amplitudes squared, the resulting integrals in eq. (3.2) would diverge in the q → 0 limit.

This can be attributed to the long range potentials associated with the exchange of the

massless bosons which, however, are modified by the interactions with the plasma that cut

the divergences off at the scale gT . Taking the interactions into account, the IR problem is

naturally dealt with by including self energy corrections to the corresponding propagators.

As kinematics furthermore require that the energy exchanged in a collision be suppressed

relative to the spatial momentum by a factor of
√

T/M , we note that the appropriate self

energy corrections are those due to static thermal screening. We can therefore simply add

static screening masses to the propagators in question, and taking into account the fact

that only the temporal gluon propagator enters the calculations, obtain as the required

resummed propagators

D00
ab(p) = − 1

p2 + m2
D

δab, (3.5)

Gp
ab(p) =

1

p2 + m2
S

δab (3.6)
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for A0 and φp, respectively.

The squared scattering amplitudes for the processes shown in figure 1.a are computed

in appendix B. Denoting heavy quarks by Q, light fermions, scalars and gluons by f , s and

g, respectively, and initial and final light particle three-momenta by k and k′, the results

read

|MQf→Qf |2 = 32g4dAM2k2(1 + cos θ)
1

(q2 + m2
D)2

+ 32g4dAM2k2(1 − cos θ)
1

(q2 + m2
S
)2

, (3.7a)

|MQs→Qs|2 = 48g4dAM2k2 1

(q2 + m2
D)2

, (3.7b)

|MQg→Qg|2 = 8g4dAM2k2(1 + cos2 θ)
1

(q2 + m2
D
)2

, (3.7c)

|MQs→Qg|2 = 8g4dAM2k2 sin2 θ
1

(q2 + m2
S
)2

, (3.7d)

|MQg→Qs|2 = 8g4dAM2k2 sin2 θ
1

(q2 + m2
S)

2
, (3.7e)

where dA ≡ N2
c − 1 and θ is the angle between k and k′. These expressions have been

summed over all internal degrees of freedom of the light particles as well as over those of

the final state heavy quark, and averaged over those of the initial state heavy quark.

Appendix B shows how to evaluate the integrals appearing in eq. (3.2). At weak

coupling, where one may use the leading order results (see e.g. ref. [19])

m2
D = 2g2NcT

2, (3.8)

m2
S = g2NcT

2, (3.9)

consistency in the weak coupling expansion requires that the terms in the integrals pro-

portional to positive powers of mD/T or mS/T be neglected, which allows us to carry out

the integrations analytically. Using the relation of eq. (3.3) between κQ and DQ, we then

obtain as our main result

DQ =
12π

dAg4T

{
log

2T

mD

+
13

12
− γE +

1

3
log 2 +

ζ ′(2)

ζ(2)

}−1

, (3.10)

to which the leading corrections come in at relative order O(g). This result is independent

of the scalar screening mass, which follows from the fact that as cos θ = 1 − q2

2k2 , every

term in eqs. (3.7a)–(3.7e) containing mS is infrared safe and therefore does not diverge in

the limit mS → 0. Also, one should take note of the fact that due to the equality of the

heavy quark and heavy scalar diffusion coefficients, the more general heavy flavor diffusion

coefficient D, given by the average of the two, coincides with eq. (3.10) as well. To better

facilitate a comparison with the strong coupling limit of the theory — in which only the

heavy flavor diffusion coefficient is a priori well-defined — we will in the following sections

refer only to the latter quantity also in the weak coupling context.
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4. Discussion

Having obtained an expression for the heavy quark (flavor) diffusion coefficient in weakly

coupled N = 4 SYM theory, it is interesting to analyze it and to compare it on one hand

to the strong coupling result of Herzog et al. and others [11, 12] and on the other hand

to the corresponding weak coupling calculation in QCD by Moore and Teaney [8]. An

immediate observation from both the expanded result of eq. (3.10) and the integral of

eq. (3.2) is that when written in terms of the ’t Hooft coupling λ = g2Nc, the only explicit

dependence on Nc in the results comes from an overall factor of (1− 1/N2
c )−1. Keeping in

mind that this multiplicative factor can be reintroduced to the results at any later time,

we shall in what follows, unless explicitly stated otherwise, consider the large Nc limit and

set (1 − 1/N2
c )−1 = 1.

In order to inspect the domain of validity of the small mD/T and mS/T expansions, we

plot in figure 2 our result for 1/(DT ) obtained both with and without the expansion, with

the curve for the latter originating from a numerical evaluation of the integral in eq. (3.2), in

which the weak coupling expressions for the screening masses given in eqs. (3.8) and (3.9)

are used. We observe that the two curves begin to differ significantly at λ ∼ 3/4, and

that the expanded result for D in fact starts to diverge when λ & 2. This unphysical

behavior signals the breakdown of the leading order weak coupling expansion for D and

consequently implies that higher order corrections must be taken into account to gain

even qualitative information about the intermediate coupling regime. Not performing the

small screening mass expansion amounts to doing a partial resummation of our results,

where some higher order contributions are included, but others, such as those coming from

additional processes like bremsstrahlung or from corrections to the scattering amplitudes

or screening masses, are neglected. While it is not a priori obvious that this is sufficient to

gain quantitative information about the behavior of D at larger coupling, it is clear from

figure 2 that including these corrections improves the qualitative behavior of the diffusion

coefficient, as the unphysical divergence of D at λ ≈ 3 is removed. In what follows, we will

therefore not use the small screening mass expansion, but instead evaluate the integrals of

eq. (3.2) numerically.

In figure 3.a, we investigate the behavior of our result at stronger coupling by plotting

1/(DT ) as a function of λ, with the screening masses still given by their leading order

weak coupling expressions. As λ increases, an increasingly important source of ambiguity

in this plot comes from neglecting the NLO corrections to the screening masses, which

are expected to be sizable already at λ ∼ 1.3 Therefore, one must exercise caution in

interpreting these results and should preferably only use them when λ ¿ 10. In figure 3.b,

we have circumvented this problem by plotting Dλ2 as a function of mD/T , with m2
S
/m2

D

fixed, but have now replaced it with an ambiguity related to the choice of these ratios at

any λ & 1. From this figure it is, however, evident that the diffusion coefficient is relatively

3At these couplings, the leading order weak coupling results for the screening masses yield values & T .

For consistency, one should therefore use resummed propagators in their evaluation, which would result in

important (but at present unknown) O(g3) correction terms. For a discussion of this topic in the case of

QCD, see ref. [23].
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λ

1/(DT )

Figure 2: Plots of our two weak coupling results for 1/(DT ): the expanded version taken from

eq. (3.10) (lower curve) and the one obtained via a numerical evaluation of the integral in eq. (3.2)

(upper curve). The large Nc limit has been taken here, and the weak coupling expressions for the

screening masses have been used.

10 20 30 40

2
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λ

1/(DT )

0.5 1 1.5 2 2.5 3

20

40

60

80

100

m
D

T

DTλ2

Figure 3: Left: A plot of the weak (lower curve) and strong (upper curve) coupling results for

1/(DT ) in the large Nc limit. The weak coupling curve has been obtained via numerical integration

of eq. (3.2), with the screening masses given by their leading order perturbative expressions, while

the strong coupling curve is taken from eq. (4.1). Right: The value of the (integrated) weak

coupling result for DTλ2 as a function of mD/T for m2

S/m2

D = 0, 1/4, 1/2 and 1 (from bottom to

top) in the large Nc limit.

insensitive to deviations of the ratio m2
D/m2

S from the leading order weak coupling result

of 1
2
.

For reasons of comparison, we have included already in figure 3.a a plot of the strong
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Figure 4: Equal coupling plots of D̃Q/D for Nc = 3 and Nf = 0, 1, 2, 3, 4 and 8 (from top to

bottom) as functions of αs.

coupling result for 1/(DT ) as obtained from refs. [11, 12], according to which

D =
2

π
√

λT
(4.1)

at large values of λ.4 As can be seen from figure 3.a, it is easy to find a smooth, monotonic

interpolating function that has the correct limiting behavior at small and large λ, but at

intermediate values of the coupling there is a wide region where neither result offers an

accurate quantitative estimate for D. At λ ∼ 20, the weak coupling extrapolation of D

is seen to be roughly six times larger than the corresponding strong coupling prediction,

which is not surprising as we in any case are far beyond the region of validity of the

weak coupling result here. However, we note that upon comparing the forms of the weak

and strong coupling curves at intermediate couplings, it appears likely that the strong

coupling expression yields an underestimate for the diffusion coefficient in this region.

To put our discussion on a more quantitative footing, let us recall that using their

weak coupling result, Moore and Teaney estimated the heavy quark diffusion coefficient

for Nf = 3 QCD to be D̃Q ≈ 1/T at αs = 0.5, where we have adopted the convention

of denoting QCD quantities with tildes. In order to convert our result for the N = 4

diffusion coefficient at α = 0.5 into at least a rough estimate for this quantity, we refer to

the behavior of the ratio D̃Q/D at weak (and equal) coupling, as shown in figure 4. There,

D is obtained by numerically integrating eq. (B.3), with the screening masses given by

their weak coupling expressions at Nc = 3, while D̃Q is evaluated from the equivalent QCD

expressions [8]. We see from this plot that at least at weak coupling, the ratio is a slowly

4The region of validity of this result is currently somewhat unclear, but the authors of ref. [11] point

out that at the experimentally interesting couplings of λ ∼ 20, it is already expected to obtain sizable

corrections. Therefore, we urge the reader to use this expression only for λ À 20.
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decreasing function of αs, and assuming this trend to carry on to stronger couplings, we

estimate an upper bound D̃Q/D . 3 at αs = α = 0.5. Keeping in mind that the strong

coupling result of eq. (4.1) is likely to be an overestimate at these couplings (corresponding

to λ ≈ 19), we on the other hand obtain D|α=0.5 & 1/(7T ), which translates into the rough

estimate D̃Q ∼ 3/(7T ) ∼ 1/(2T ) at αs = 0.5.

Finally, from the point of view of the above comparisons between N = 4 SYM theory

and QCD, it is also of some interest to investigate the ratio of the diffusion coefficients of

the two theories at very weak coupling to get some insight into the order of magnitude of

this quantity. Setting the couplings of the two theories again equal, we have from ref. [8]

D̃Q =
72π

dAg4
sT

{
log

2T

m̃D

+
1

2
− γE +

ζ ′(2)

ζ(2)

+
Nf

2Nc

(
log

4T

m̃D

+
1

2
− γE +

ζ ′(2)

ζ(2)

)}−1

, (4.2)

from which we obtain at asymptotically weak coupling (where the logs in eqs. (3.10)

and (4.2) dominate over the constant terms)

D̃Q

D
→ 6

1 +
Nf

2Nc

. (4.3)

We observe that for all reasonable values of Nf , the QCD diffusion coefficient is con-

siderably larger than that of N = 4 SYM, which is mostly a reflection of the fact that

there are more light degrees of freedom in weakly coupled N = 4 SYM theory for the

heavy quark to scatter off of. For example, in the Nf = 0 case of pure Yang-Mills

theory (in which all light particles are in the adjoint representation), one has 16 light

bosonic degrees of freedom, while N = 4 SYM contains 64 bosonic and 64 fermionic de-

grees of freedom. A straightforward analysis shows that each bosonic degree of freedom

contributes equally to the leading log in κQ, while each fermionic degree of freedom con-

tributes half as much, so that at asymptotically weak coupling the diffusion coefficient of

pure Yang-Mills theory should be 64+32
16

= 6 times bigger than that of N = 4 SYM, just

as we observed above. Similar conclusions have been drawn also in ref. [24], where the

authors compared the weak coupling results for the sheer viscosity in N = 4 SYM and

QCD.

5. Conclusions and future directions

In the paper at hand, we have investigated the diffusion of a heavy, non-relativistic thermal

particle — either a quark or a scalar belonging to a fundamental N = 2 hypermultiplet

— immersed in N = 4 Super Yang-Mills plasma. We have derived a result for the heavy

flavor diffusion coefficient that is valid to leading order in g and T/M , and compared it to

the corresponding strong coupling results of refs. [11, 12] as well as to the weak coupling

calculations of ref. [8] in QCD. Our findings show that a naive extrapolation of the weak

coupling result to intermediate couplings yields a relatively large disagreement with the
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strong coupling predictions, while in the weak coupling limit the heavy flavor diffusion

coefficient in the SYM theory is considerably smaller than the corresponding QCD quantity.

Based on our analysis, we have estimated the heavy quark diffusion coefficient in QCD to

be roughly D̃Q ∼ 1/(2T ) at αs = 0.5.

As is evident from the small number of weak coupling results available in N = 4 SYM

theory, especially in comparison with the strong coupling limit or with perturbative QCD,

there is a lot of further work to be done that can provide the QCD community useful

insights from the abundance of existing AdS/CFT calculations. The obvious next goal

related to the present work — and one that that should be straightforward to achieve —

is to generalize the results of this paper to the case of the diffusion of a relativistic quark

with γv & 1. This is work in progress.

Acknowledgments

We are grateful to Chris Herzog, Andreas Karch and Larry Yaffe for suggesting the topic

and for their valuable comments and advice, and to Andy O’Bannon, Guy Moore, Maurizio

Piai, Dam Son and Matt Strassler for useful discussions. This work was supported by the

U.S. Department of Energy under Grant No. DE-FG02-96ER40956.

A. The Lagrangian

In this first appendix, we aim to present a somewhat detailed derivation of the Lagrangian

of our theory, N = 4 Super Yang-Mills with a massive N = 2 hypermultiplet, following to

a large extent the treatment of ref. [18]. The field content of the N = 4 theory consists

of one gauge multiplet with components (Aµ, λ,D) and three chiral multiplets χ, χ′ and

χ′′ with components (φ,ψ,F), (φ′, ψ′,F ′) and (φ′′, ψ′′,F ′′), respectively, while the N = 2

sector contains two fundamental massive chiral multiplets Q′ and Q′′ with components

(Φ′,Ψ′, F ′) and (Φ′′,Ψ′′, F ′′). Here, Aµ is an SU(Nc) gauge field, λ, ψ, ψ′, ψ′′, Ψ′ and Ψ′′

are Majorana fermions, φ, φ′, φ′′, Φ′, and Φ′′ are complex scalars, and D, F , F ′, F ′′, F ′

and F ′′ so-called auxiliary fields. All fields in the N = 4 sector transform in the adjoint

representation of the gauge group and are hence traceless, hermitian Nc × Nc matrices,

while the N = 2 fields are fundamental under SU(Nc) and can therefore be viewed as

Nc-component vectors in color space.

If we fix the heavy particle masses to M , the superpotential of the theory reads

f(χ, χ′, χ′′, Q′, Q′′) = −i
√

2 Q′′T χQ′ + 2i
√

2 tr (χ[χ′, χ′′]) + MQ′T Q′′. (A.1)

Integrating out the auxiliary fields and going through some straightforward algebra, we

obtain the Lagrangian [18]5

L = L0 + L1 + L2, (A.3)

5In doing this, we have identified and corrected several misprints in the original reference. These are:

an extra second term on the third-to last row of eq. (27.4.1), a missing ε matrix between λ and ψ on the

second row of eq. (27.9.3), reversed indices m and n in the second term on the tenth row of eq. (27.9.33)

and several misprints in the µ-dependent terms of eq. (27.9.33). The last two rows of the latter equation
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where

L0 = −tr
{1

2
FµνFµν + 2Dµφ†Dµφ + ψ̄ /Dψ + λ̄ /Dλ + 2Dµφ′†Dµφ′ + 2Dµφ′′†Dµφ′′

+ ψ̄′ /Dψ′ + ψ̄′′ /Dψ′′
}
− DµΦ′†DµΦ′ − M2Φ′†Φ′ − DµΦ′′†DµΦ′′

− M2Φ′′†Φ′′ − 1

2
Ψ̄′ /DΨ′ − 1

2
Ψ̄′′ /DΨ′′ − 2MRe Ψ̄′P+Ψ′′, (A.4)

L1/g = Im
{
− 4

√
2tr λ̄P+[φ†, ψ] + 4

√
2tr ψ̄′P+[φ,ψ′′] + 4

√
2tr ψ̄′′P+[φ′, ψ]

− 4
√

2tr ψ̄′P+[φ′′, ψ] + 4
√

2tr ψ̄′P+[φ′†, λ] + 4
√

2tr ψ̄′′P+[φ′′†, λ]

− 2
√

2 Ψ̄′′P+ψΦ′ − 2
√

2 Φ′′T ψ̄P+Ψ′ + 2
√

2 Φ′†λ̄P+Ψ′ − 2
√

2 Ψ̄′′P+λΦ′′∗

− 2
√

2MΦ′′†φT Φ′′ − 2
√

2MΦ′†φΦ′ − 2
√

2 Ψ̄′′P+φΨ′
}
, (A.5)

L2/g
2 = −2tr

∣∣[φ, φ′]
∣∣2 − 2tr

∣∣[φ, φ′†]
∣∣2 − 2tr

∣∣[φ, φ′′]
∣∣2 − 2tr

∣∣[φ, φ′′†]
∣∣2

− 1

2

∣∣∣tr ta
{
2[φ′, φ′†] − 2[φ′′†, φ′′] + Φ′Φ′† − Φ′′∗Φ′′T

}∣∣∣
2

− tr [φ†, φ]2

− 2
∣∣tr ta

{
2[φ′, φ′′] + Φ′Φ′′T

}∣∣2 − Φ′†{φ, φ†}Φ′ − Φ′′T {φ, φ†}Φ′′∗. (A.6)

Here P± ≡ 1
2
(1 ± γ5), ta are the generators of SU(Nc) and a sum over a is implied.

The form of the above functions can be greatly simplified upon making the redefinitions

(adopted partially from ref. [19])

ψ1 ≡ ψ, ψ2 ≡ λ, ψ3 ≡ ψ′, ψ4 ≡ ψ′′,

ω ≡ P+Ψ′ + P−Ψ′′, (A.7)

φ1 = φ =
1√
2
(X1 + iY1),

φ2 = φ′ =
1√
2
(X2 + iY2),

φ3 = φ′′ =
1√
2
(X3 + iY3), (A.8)

Φ1 ≡ Φ′, Φ2 ≡ Φ′′∗, (A.9)

where Xp and Yp are hermitian scalar fields and ω a Dirac spinor. It is a straightforward

exercise to show that in terms of these variables L0 reads

L0 = −tr
{1

2
FµνFµν + ψ̄i /Dψi + (DXp)

2 + (DYp)
2
}

− Φ†
n(−D2 + M2)Φn − ω̄( /D + M)ω, (A.10)

where a summation over repeated indices is implied. Using the Majorana condition of

eq. (1.2), the general form of the first six terms in eq. (A.5) can on the other hand be

should be replaced by

− 1

4
(µ†µ)mnφ′†

mφ′
n − 1

4
(µ†µ)mnφ′′†

m φ′′
n − Re µnmψ̄′

nP+ψ′′
m

−
√

2 Im (t′Aµ)mnφAφ′′∗
n φ′′

m −
√

2 Im (µt′A)mnφAφ′∗
mφ′

n. (A.2)
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written as

4
√

2 Im tr
(
ψ̄iP+[φk, ψj ]

)
= −i2

√
2 tr

(
ψ̄iP+[φp, ψj ] − ψ̄iP−[ψj , φ

†
p]

)

= −2
√

2 tr
(
iψ̄i[Reφp, ψj ] − ψ̄iγ5[Im φp, ψj ]

)
, (A.11)

which implies that one may simplify their sum into

−tr
{
iψ̄iα

p
ij [Xp, ψj ] − ψ̄iγ5β

p
ij [Yp, ψj ]

}
. (A.12)

Here, αp and βp are coefficient matrices that may be taken as antisymmetric as the ψi

anticommute and whose components can easily be verified to be given by eq. (2.5). The

remaining terms in eq. (A.5) are simple to translate into the new variables, leading to the

final result

L1/g = tr
{
− iψ̄iα

p
ij [Xp, ψj ] + ψ̄iγ5β

p
ij [Yp, ψj ]

}
− ω̄ (Y1 − iγ5X1) ω

+ 2
√

2Im
{
− ω̄P+ψ1Φ1 − Φ†

2ψ̄1P+ω + Φ†
1ψ̄2P+ω − ω̄P+ψ2Φ2

}

− 2MΦ†
nY1Φn. (A.13)

Finally attacking L2, the terms in eq. (A.6) that are independent of Φn read

− 2tr
∣∣[φ1, φ2]

∣∣2 − 2tr
∣∣[φ1, φ

†
2]

∣∣2 − 2tr
∣∣[φ1, φ3]

∣∣2 − 2tr
∣∣[φ1, φ

†
3]

∣∣2

− tr
∣∣∣[φ2, φ

†
2] − [φ†

3, φ3]
∣∣∣
2

− tr [φ†
1, φ1]

2 − 4tr |[φ2, φ3]|2 . (A.14)

Using the Jacobi identity for the cross terms on the second line, we have

−2 tr [φ2, φ
†
2][φ3, φ

†
3] = 2 tr

∣∣[φ2, φ
†
3]

∣∣2 + 2 tr
∣∣[φ2, φ3]

∣∣2, (A.15)

so eq. (A.14) becomes

− 2 tr
∣∣[φ1, φ2]

∣∣2 − 2 tr
∣∣[φ1, φ

†
2]

∣∣2 − 2 tr
∣∣[φ1, φ3]

∣∣2 − 2 tr
∣∣[φ1, φ

†
3]

∣∣2

− 2 tr |[φ2, φ3]|2 − 2 tr
∣∣∣[φ2, φ

†
3]

∣∣∣
2

− tr [φ†
1, φ1]

2 − tr [φ†
2, φ2]

2 − tr [φ†
3, φ3]

2

= −1

2
tr (i[χA, χB ])2 , (A.16)

where we have defined χA ≡ (X1, Y1,X2, Y2,X3, Y3). As before, the remaining terms in

eq. (A.6) are easy to translate into the new variables, leading to the result

L2/g
2 = −1

2
tr (i[χA, χB ])2 + (−1)nΦ†

n

(
[φ2, φ

†
2] + [φ3, φ

†
3]

)
Φn

− 4Re
(
Φ†

1[φ2, φ3]Φ2

)
− 1

2

∣∣(−1)nΦ†
ntaΦn

∣∣2 − 2
∣∣Φ†

2taΦ1

∣∣2

− Φ†
n{φ1, φ

†
1}Φn, (A.17)

where repeated indices are again summed over.
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B. Matrix elements and integrals

In this appendix, we will briefly review our evaluation of the necessary scattering amplitudes

squared in the non-relativistic limit, as well as explain, how one can perform the integrals

in eq. (3.2) analytically in the weak coupling limit. Our treatment is to a large extent

parallel to that of ref. [8].

B.1 Matrix elements

As discussed in section 3, the scattering amplitudes squared for the heavy fermions and

scalars become identical in the non-relativisic limit, which we exploit by only computing

the simpler scalar amplitudes in the Coulomb gauge. We denote the color, flavor and

momentum of the initial and final light particles by a,m,k and b, n,k′, respectively, and

the color and momentum of the heavy particles by i,p and j,p′. The angle between k and

k′ is written as θ, the structure constants of the gauge group as fabc and the propagators

for the scalars and the gauge field as Gp
cd and Dµν

cd . Because the plasma has no preferred

color orientation, we adopt the convention of averaging over the color configurations of the

initial heavy particle, while the colors of the light particles as well as the final heavy scalar

are summed over.

As a concrete example, consider the amplitude for the process Sf → Sf . The total

scattering amplitude for this process is the sum of the first and fourth diagrams of figure 1.b

and is given by

MSf→Sf =
(
− gδmnfabcv̄(k)γµv(k′)

)
Dµν

cd (Q)
(
ig(P + P ′)ν(td)ij

)

+
(
gβ1

mnfabcv̄(k′)γ5v(k)
)
G1

cd(Q)
(
− 2igM(td)ij

)
. (B.1)

Upon squaring this expression and summing over m and n, it becomes evident that the

cross term will be proportional to tr β1, which vanishes due to the antisymmetricity of the

matrix. Furthermore, in the non-relativistic limit we have (P + P ′)ν ≈ 2Mδν0, so after

summing over the colors, flavors and spins of the light fermions as well as the colors of the

final heavy scalar, we obtain the result of eq. (3.7a),

|MSf→Sf |2 = 32g4dAM2k2(1 + cos θ)
1

(q2 + m2
D)2

+ 32g4dAM2k2(1 − cos θ)
1

(q2 + m2
S
)2

. (B.2)

The results quoted in eqs. (3.7b)–(3.7e) are obtained in a highly analogous fashion.

B.2 Integrals

The integrals appearing in eq. (3.2) are of the same type as those encountered in the QCD

case, and our treatment of them therefore follows that of ref. [8] quite closely. We begin by

eliminating the three-dimensional delta function through integration over k′, then change

variables from p′ to q = p′ − p, and finally perform the angular part of the q integral to
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get rid of the energy delta function. This yields

3κH =
1

64π3M2

∫ ∞

0

dk

∫ 2k

0

dq q3

{
eβk

(eβk + 1)
2

∑

f,f ′

∣∣MHf→Hf ′

∣∣2

+
eβk

(eβk − 1)
2

∑

b,b′

|MHb→Hb′ |2
}

, (B.3)

with β ≡ 1/T . The sums over the amplitudes squared can be performed using the results

of eqs. (3.7a)–(3.7e), and writing the results out explicitly we get

∑

f,f ′

∣∣MHf→Hf ′

∣∣2 = 32g4dAM2k2

(
2 − q2

2k2

)
1

(q2 + m2
D
)2

+ 32g4dAM2k2

(
q2

2k2

)
1

(q2 + m2
S)

2
, (B.4)

∑

b,b′

|MHb→Hb′ |2 = 8g4dAM2k2

(
8 − q2

k2
+

q4

4k4

)
1

(q2 + m2
D
)2

+ 16g4dAM2k2

(
q2

k2
− q4

4k4

)
1

(q2 + m2
S)

2
, (B.5)

where the relation cos θ = 1 − q2/2k2 has been applied.

The integral over q in eq. (B.3) can be performed analytically, resulting in a somewhat

lengthy one-dimensional integral representation for the diffusion coefficient as a function of

the screening masses, which we plotted numerically in section 4. In the true weak coupling

limit, where the screening masses satisfy m/T ∼ g ¿ 1, we may, however, simplify the

calculation considerably by noting that all terms in eqs. (B.4) and (B.5) proportional to

positive powers of q are infrared insensitive and thus independent of the masses to leading

order. This enables us to set the masses to zero in these terms and gives

∑

f,f ′

∣∣MHf→Hf ′

∣∣2 = 64g4dAM2k2 1

(q2 + m2
D)2

, (B.6)

∑

b,b′

|MHb→Hb′ |2 = 8g4dAM2k2

(
1

q2k2
− 1

4k4
+

8

(q2 + m2
D)2

)
, (B.7)

which simplifies the result of the q integration in eq. (B.3) dramatically. Finally evaluating

the k integrals with standard methods, our weak coupling result for 3κH reads

3κH =
g4dA

2π3

∫ ∞

0

dkk2

{
eβk

(eβk + 1)
2

(
−1 + log

4k2

m2
D

)
+

eβk

(eβk − 1)
2

(
−3

4
+ log

4k2

m2
D

)}

=
g4dAT 3

2π

{
log

2T

mD

+
13

12
− γE +

1

3
log 2 +

ζ ′(2)

ζ(2)

}
, (B.8)

which in turn leads to the expression of eq. (3.10) for DQ (or DS).
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